python-algorithms Documentation
Release

Arseniy Antonov

Apr 19, 2018

Contents

1 algorithms.arithmetic 3
LI GCD . . 3
L2 LCM . . e 3

2 algorithms.graphs 5
2.1 BES . 7
22 DES . 7
23 Dijkstrao e 8
2.4 Bidirectional Dijkstra L e e e 8
2.5 Cycledetection (DES) e e e e e e e 9
2.6 AStAr ... 9
2.7 Bellman-Ford (shortest path with negative arbitrage) 9
2.8 Kruskal e e 9
2.9 Bellman-Ford (with negative cycle detection) 9
210 BIpartite e e e e e e e e e e e e e e e e e e e 9
2,11 BSTcheck 9
2.12 Strongly connected COMPONENtS e e e e e e e e 10
2.13 Topological SOt e e 10

3 algorithms.greedy 13
3.1 Covering SEZMENTS ¢« v v vttt e e e e e e e e e e e e e e e e e 13
3.2 Fractional Knapsack e 13
algorithms.search 15
4.1 Binary Search L e e 15
42 ClosestPair o e e e e e e 15
43 Fbonacci e e 16
44 Fibonacciwithmodulo 17
45 Rabin-Karp o o e e e e 17
algorithms.sorting 19
S0 Merge SOrt . . . o L 19
52 Quick Sort 19
algorithms.dynamic_programming 21
6.1 Knapsack e e e e e e 21

7 algorithms.hash_tables
7.1 HashChain e e e e

Python Module Index

python-algorithms Documentation, Release

python-algorithms project is a collection of algorithms implemented on Python3. 6 You don’t need to install these
project as a module (via pip) because usually you just need only one algorithm instead of all pack, so just copy and
paste the source code. For easy navigation please use links to the source code below.

Contents 1

python-algorithms Documentation, Release

2 Contents

CHAPTER 1

algorithms.arithmetic

1.1 GCD

Greatest common divisor (gcd) of two or more integers, which are not all zero, is the largest positive integer that
divides each of the integers.

gcd (*integer_nums: int) — int
Function for calculating GCD [greatest common divisor] of N integers

Parameters *integer_nums — integer arguments

Returns Greatest common divisor of N positive integers

Examples

>>> gcd (54, 24)
6

>>> gcd (2, 4, 6, 8, 16)

1.2 LCM

The least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually
denoted by LCM(a, b), is the smallest positive integer that is divisible by both a and b. [Wikipedia]

lcm (*integer_nums: int) — int
Private function for calculating LCM [least common multiple] of N integers

Parameters *integer_nums — integer arguments

Returns Least common multiple of N positive integers.

python-algorithms Documentation, Release

Examples

>>> lcm(l6, 20)
80

>>> lcm (8, 9, 21)
504

4 Chapter 1. algorithms.arithmetic

CHAPTER 2

algorithms.graphs

get_edges (graph)
Function for calculating number of edges

Parameters graph — graph representation as Example: {1
Returns edges of the graph

get_nodes (graph)
Function for calculating number of nodes in the graph

Parameters graph — graph representation as Example: {1
Returns nodes of the graph

num_of_ edges (graph)
Function for calculating number of edges

Parameters graph — graph representation as Example: {1
Returns number of the edges in the graph

num_of_ nodes (graph)
Function for calculating number of nodes in the graph

Parameters graph — graph representation as Example: {1
Returns number of nodes in the graph

prepare_direct_graph (edges)
Function for converting list of edges to dict graph representation

Parameters edges — list of tuples, example: [(1,2), (2,3)]
Returns that represent graph

Return type Defaultdict(list)

2 {2:1,3:5},2: {3:2},4: {1: 2}}

:{2:1,3:5},2: {3:2},4: {1: 2}}

2 {2:1,3:5},2: {3:2},4: {1: 2}}

:{2:1,3:5},2: {3:2},4: {1: 2}}

python-algorithms Documentation, Release

Examples

>>> prepare_direct_graph ([(1, 2), (3, 4), (2, 4), (2, 3)])
defaultdict (1ist, {1: [2], 2: [1, 3, 4], 3: [2, 4], 4: [2, 31})

prepare_undirect_graph (edges)
Function for converting list of edges to dict graph representation

Parameters edges — list of tuples, example: [(1,2), (2,3)]
Returns that represent graph

Return type Defaultdict(list)

Examples

>>> prepare_undirect_graph ([(1, 2), (3, 4), (2, 4), (2, 3)1)
defaultdict (1list, {1: [2], 2: [1, 3, 41, 3: [2, 41, 4: [2, 31})

prepare_weighted_direct_graph (edges)
Function for conveting list of edges with weights to dict graph representation :param edges: list of tuples,
example [(1, 2, 3), (3, 2, 1)]; [(node_a, node_b, weight)]

Returns

>>> prepare_weighted_direct_graph ([(1, 2, 1), (4, 1, 2), (2, 3, 2),
(1, 3, 5)1)
defaultdict (dict, {1: {2: 1, 3: 5}, 2: {3: 2}, 4: {1: 2}})

prepare_weighted_undirect_graph (edges)
Function for conveting list of edges with weights to dict graph representation :param edges: list of tuples,
example [(1, 2, 3), (3, 2, 1)]; [(node_a, node_b, weight)]

Returns

>>> prepare_weighted_undirect_graph([(1, 2, 1), (4, 1, 2), (2, 3, 2),
- (1, 3, 5 1)

defaultdict (<class 'dict'>, {1: {2: 1, 4: 2, 3: 5}, 2: {1: 1, 3: 2},
—~4: {1: 2}, 3: {2: 2, 1: 5}})

reverse_graph (graph)
Function for reverting direction of the graph

Parameters graph — graph representation as Example: [(1, 2), (3, 4), (2, 4), (2, 3)]

Returns reversed graph

Examples

>>> reverse_graph({1: [2], 2: [1, 3, 41, 3: [2, 41, 4: [2, 311})
defaultdict (<class 'list'>, {2: [1, 3, 41, 1: [2], 3: [2, 41, 4: [2, 311})

reverse_weighted_ graph (graph)
Function for reverting direction of the graph (weights still the same)

Parameters graph — graph representation as Example: {1: {2: 1, 3: 5}, 2: {3: 2}, 4: {1: 2}}

6 Chapter 2. algorithms.graphs

python-algorithms Documentation, Release

Returns reversed graph

Examples

>>> reverse_weighted_graph({1: {2: 1, 3: 5}, 2: {3: 2}, 4: {1: 2}})
defaultdict (<class 'dict'>, {2: {1: 1}, 3: {1: 5, 2: 2}, 1: {4: 2}})

2.1 BFS

Breadth-first search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree
root (or some arbitrary node of a graph, sometimes referred to as a ‘search key’) and explores the neighbor nodes first,
before moving to the next level neighbours. [Wikipedia]

Worst-case performance: O(V + E) = O(b”d)
Worst-case space complexity O(V) = O(b”d)
https://wikipedia.org/wiki/Breadth-first_search

bfs_iterative (graph, root)
Iterative version of the BFS algorithm

Parameters
* graph — dict representation of the graph
* root - start point

Returns in order of visiting vertices

Return type list

Examples:

2.2 DFS

Breadth-first search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree
root (or some arbitrary node of a graph, sometimes referred to as a ‘search key’) and explores the neighbor nodes first,
before moving to the next level neighbours. [Wikipedia]

Worst-case performance: O(V + E) = O(b"d)
Worst-case space complexity O(V) = O(b”d)
https://wikipedia.org/wiki/Breadth-first_search

bfs_iterative (graph, root)
Iterative version of the BFS algorithm

Parameters
* graph — dict representation of the graph
* root — start point

Returns in order of visiting vertices

Return type list

2.1. BFS 7

https://wikipedia.org/wiki/Breadth-first_search
https://wikipedia.org/wiki/Breadth-first_search

python-algorithms Documentation, Release

Examples:

2.3 Dijkstra

Dijkstra’s algorithm is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for
example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years
later [Wikipedia]

Worst-case Performance: O(IEI+IV| log V)

dijkstra (graph, start, target)
Solves shortest path problem using Dijkstra algorithm :param graph: graph representation :param start: start
node :param target: target node

Returns distance between start and target nodes

Return type int

Examples

>>> graph = prepare_weighted_undirect_graph (
(i, 2, 7, (1, 3, 99, (1, 6, 14), (6, 3, 2), (6, 5, 9), (3, 2, 10), (3, 4, 11),
(2, 4, 15), (6, 5, 9), (5, 4, 6)])

>>> dijkstra(graph, 1, 6)
11

2.4 Bidirectional Dijkstra

Bidirectional search is a graph search algorithm that finds a shortest path from an initial vertex to a goal vertex in a
directed graph. It runs two simultaneous searches: one forward from the initial state , and one backward from the goal,
stopping when the two meet in the middle. [Wikipedia]

bidi_dijkstra (graph, start, target)
Calculate shortest path via Dijkstra algorithm, with bidirectional optimization which means that we start from
target and start points and swith between them each step

Parameters

* graph — graph representation

* start —start node

* target — target node
Returns lengths of the shortest path between start and target nodes
Return type int

Examples: >>> graph = prepare_weighted_undirect_graph([(1, 2, 7), (1, 3, 9), (1, 6, 14), (6, 3, 2), (6, 5, 9), (3,
2,10), (3,4, 11), (2,4, 15), (6, 5,9), (5,4, 6)])

>>> dijkstra(graph, 1, 6)
11

8 Chapter 2. algorithms.graphs

python-algorithms Documentation, Release

2.5 Cycle detection (DFS)

2.6 AStar

class AStar (n, adj, cost, x, y)
Bases: object

clear ()

potential (v, 1)

query (s, 1)

visit (g, v, dist, measure)

readl ()

2.7 Bellman-Ford (shortest path with negative arbitrage)
2.8 Kruskal
2.9 Bellman-Ford (with negative cycle detection)

2.10 Bipartite

In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into
two disjoint and independent sets U and V such that every edge connects a vertex in U to one in V. Vertex sets U and V
are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length
cycles. [Wikipedia]

bipartite (graph)
Function checks if graph is bipartite

Parameters graph — graph representation
Returns True if bipartite , False otherwise

Return type bool

2.11 BST check

Function tor check if the tree is correct Binary Search Tree (BST)

check_if bst (node, mini=-inf, maxi=inf)
Check if the given tree is Binary Search Tree (BST)

Parameters
* node - root node of the Tree. node arg must have .left, .right and .data variables
* mini — min value - should be omitted

e maxi — max value - should be omitted

2.5. Cycle detection (DFS) 9

python-algorithms Documentation, Release

Returns bool - True if it’s BST and False if not

Examples

Precondition:

>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>

class Node:
def _ init_ (self, data):
self.data = data
self.left = None
self.right = None
root = Node (4)
root.left = Node (2)
root.right = Node (6)
root.left.left = Node (1l
root.left.right = Node (
root.right.left = Node (

)
3
5
root.right.right = Node (

)
)
7)

Example itself:

>>>

True

check_if_bst (root)

2.12 Strongly connected components

In the mathematical theory of directed graphs, a graph is said to be strongly connected or diconnected if every vertex
is reachable from every other vertex.

class StronglyConnected (graph)
Bases: object

strongly connected_components ()

Function finds, and return list of SCC in the graph
Returns SCC
Return type list

Examples

>>> graph = prepare_direct_graph([(0, 2), (2, 1), (1, 0), (0, 3), (3, 4)1)
>>> StronglyConnected (graph) .strongly_connected_components ()

(o, 1, 21, (31, [4]]

2.13 Topological sort

In the field of computer science, a topological sort or topological ordering of a directed graph is a linear ordering of its
vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering. [Wikipedia]

class TopologicalSort (edges)
Bases: object

10

Chapter 2. algorithms.graphs

python-algorithms Documentation, Release

sort ()
Function do a topological sorting Returns: topologically sorted list of vertices

2.13. Topological sort 11

python-algorithms Documentation, Release

12 Chapter 2. algorithms.graphs

CHAPTER 3

algorithms.greedy

3.1 Covering segments

Given a set of n segments {[a(0) ,b(0)],[a(1) ,b(1)],...,[a(n)] ,b(n)]1]} with integer coordinates on a line, find the
minimum number m of points such that each segment contains at least one point.

covering_segments (segments: [<class 'tuple’>]) — list
Function for finding minimum number of points that each segment contains

Parameters segments — list of tuples with start and end point coordinates

Returns list of points where segments are crossing

Examples

>>> covering_segments ([(4, 7), (1, 3), (2, 5), (5, 6)1)
[3, 6]

3.2 Fractional Knapsack

Given weights and values of n items, we need put these items in a knapsack of capacity W to get the maximum total
value in the knapsack.

Complexity: O(n log n)

fractional_knapsack (capacity: int, items: [<class ’tuple’>]) — float
Function solves fractional knapsack problem

Parameters
* capacity - total capacity of backpack

* items - list of tuples [(value, weight),...]

13

python-algorithms Documentation, Release

Returns float - maximum value that can be placed in backpack

Examples

>>> fractional_knapsack (50,
240.0

[(60,

10),

(100,

20),

(120,

300 1)

14

Chapter 3. algorithms.greedy

CHAPTER 4

algorithms.search

4.1 Binary Search

In computer science, binary search is a search algorithm that finds the position of a target value within a sorted array.
Binary search compares the target value to the middle element of the array; if they are unequal, the half in which the
target cannot lie is eliminated and the search continues on the remaining half until it is successful. If the search ends
with the remaining half being empty, the target is not in the array.

binary_search (sorted_array, target_element)
Binary search algorithm

Parameters
* sorted array - list of sorted elements (integers)
* target_element —element to find

Returns position of target_element if succes -1 if element is not found

Examples

>>> binary_search([1, 2, 3, 41, 5)
-1

>>> binary_search([x for x in range(10000)], 26)
26

4.2 Closest Pair

The closest pair of points problem or closest pair problem is a problem of computational geometry: given n points in
metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the

15

python-algorithms Documentation, Release

Euclidean plane[1] was among the first geometric problems that were treated at the origins of the systematic study of
the computational complexity of geometric algorithms. [Wikipedia]

brute_force_distance (points)

Brute force solution for closest pair problem
Complexity: O(n”2)
Parameters points — list of points in the following format [(x1, y1), (x2, y2), ... , (xn, yn)]

Returns Minimum distance between points

Examples

>>> n_log_n_squared_distance([(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3
—4)1)
1.4142135623730951

n_log_n_squared_distance (points)

O(N (LogN)”2) solution for closest pair problem
Complexity: O(n (log n)"2)
Parameters points — list of points in the following format [(x1, y1), (x2, y2), ... , (xn, yn)]

Returns Minimum distance between points

Examples

>>> n_log_n_squared_distance ([(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3
—4)1)
1.4142135623730951

4.3 Fibonacci

In mathematics, the Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci se-
quence, and characterized by the fact that every number after the first two is the sum of the two preceding ones:

fibonacci (number)

Recursive implementation of fibonacci function
Parameters number — number in fibonacci sequence

Returns fibonacci number

Examples

>>> fibonacci_recursive (20)
6765

16

Chapter 4. algorithms.search

python-algorithms Documentation, Release

4.4 Fibonacci with modulo

Calculating (n-th Fibonacci number) mod m

fibonacci_modulo (number, modulo)
Calculating (n-th Fibonacci number) mod m

Parameters
¢ number — fibonacci number
¢ modulo — modulo

Returns (n-th Fibonacci number) mod m

Examples

>>> fibonacci_modulo (11527523930876953, 26673)
10552

4.5 Rabin-Karp

In computer science, the Rabin—Karp algorithm or Karp—Rabin algorithm is a string searching algorithm created by
Richard M. Karp and Michael O. Rabin (1987) that uses hashing to find any one of a set of pattern strings in a text.
For text of length n and p patterns of combined length m,

its average and best case running time is O(n+m) in space O(p), but its worst-case time is O(nm).

rabin_karp (fext, pattern)
Rabin-Karp algorithm that finds all occurrences of pattern in text

Parameters
* text — text to search in
* pattern — pattern to search for

Returns list of position where pattern placed in text

Examples

>>> rabin_karp ('AABAACAADAABAABA', 'AABA'")
[0, 9, 12]

>>> rabin_karp('aaaaa', 'aaa')
[0, 1, 2]

4.4. Fibonacci with modulo 17

python-algorithms Documentation, Release

18 Chapter 4. algorithms.search

CHAPTER B

algorithms.sorting

5.1 Merge Sort

In computer science, merge sort (also commonly spelled mergesort) is an efficient, general-purpose, comparison-based
sorting algorithm. Most implementations produce a stable sort, which means that the implementation preserves the
input order of equal elements in the sorted output. Mergesort is a divide and conquer algorithm that was invented by
John von Neumann in 1945.

merge_sort (array)
Sort array via merge sort algorithm

Parameters array — list of elements to be sorted

Returns Sorted list of elements

Examples

>>> merge_sort ([1, -10, 21, 3, 51)
[-10, 1, 3, 5, 21]

5.2 Quick Sort

Quicksort (sometimes called partition-exchange sort) is an efficient sorting algorithm, serving as a systematic method
for placing the elements of an array in order. Developed by Tony Hoare in 1959[1] and published in 1961,[2] it is still
a commonly used algorithm for sorting. [Wikipedia]

https://en.wikipedia.org/wiki/Quicksort
Average complexity: O(n log n) Worst case: O(n”2)

quick_sort (array, low, high)
Quick Sort function sorts array

19

https://en.wikipedia.org/wiki/Quicksort

python-algorithms Documentation, Release

Parameters
* array - list of elements

* low — at starting point low must be =0

* high — at starting point high must be = len(array)-1

Returns sorted array

Return type list

Examples

>>> quick_sort ([4, 9, 4, 4, 1, 9, 4, 4,
(1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 9, 9, 9]

>>> quick_sort ([1, 10,
[1, 4.0, 10, 32]

switch (array, a, b)

20

Chapter 5. algorithms.sorting

CHAPTER O

algorithms.dynamic_programming

6.1 Knapsack

The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each
with a weight, determine the number of each item to include in a collection so that the total weight is less than or equal
to a given limit.

optimal_weight (capacity, weights)
Function calculate optimal_weight for rucksack from given list of weights

Parameters
* capacity — max capacity of rucksak
* weights - list of weights

Returns Max possible weight that meet <= max capacity

Examples

>>> optimal_weight (165, [23, 31, 29, 44, 53, 38, 63, 85, 89, 82])
165

21

python-algorithms Documentation, Release

22 Chapter 6. algorithms.dynamic_programming

CHAPTER /

algorithms.hash_tables

7.1 Hash Chain

A hash chain is the successive application of a cryptographic hash function to a piece of data. In computer security, a
hash chain is a method to produce many one-time keys from a single key or password. [Wikipedia]

class HashChain (bucket_count)

Bases: object

Class HashChain realisation

Examples

>>> hash_chain

>>> hash_chain

HellO world

no

yes

HellO

GooD 1luck

>>> hash_chain.
.add ("Hello")
>>> hash_chain.

>>> hash_chain.

>>> hash_chain.

>>> hash_chain.
>>> hash_chain.

>>> hash_chain.
>>> hash_chain.
>>> hash_chain.
>>> hash_chain.

= HashChain (5)
add ("world")

check (4)

find ("World™)

find ("world"™)

delete ("world")
check (4)

delete ("HellO")
add ("luck™)

add ("GooD™")
check (2)

Explanation: The ASCII code of "w’ is 119, for *o’ itis 111, for ’r’ itis 114, for ’I’ it is 108, and for ’d” it is 100.
Thus, h(“world”) = 4. It turns out that the hash value of “HellO* is also 4. We always insert in the beginning of

23

python-algorithms Documentation, Release

the chain, so after adding “world” and then “HellO” in the same chain index 4, first goes “HellO” and then goes
“world”. Of course, “World” is not found, and “world” is found, because the strings are case-sensitive, and the
codes of "W’ and ’w’ are different. After deleting “world”, only “HellO” is found in the chain 4. Similarly to
“world” and “HellO”, after adding “luck” and “GooD” to the same chain 2, first goes “GooD” and then “luck”.

add (data)
Add data to hash table

Parameters data - string data

check (idx)
Check hash_chain by index

Parameters idx — index in hash
Returns String chain separated by space

delete (data)
Delete data from hash table

Parameters data — string data

£ind (data)
Find data in hash table

Parameters data - string data

Returns True if found, False if not

24 Chapter 7. algorithms.hash_tables

Python Module Index

a

algorithms
algorithms
algorithms
algorithms
algorithms
21
algorithms
algorithms
algorithms

algorithms
algorithms
algorithms
algorithms
10
algorithms
algorithms
algorithms
algorithms
13
algorithms
algorithms

algorithms

.arithmetic, 3
.arithmetic.gcd, 3
.arithmetic.lcm, 3
.dynamic_programming, 21
.dynamic_programming.knapsack

.graphs, 5
.graphs.AStar, 9
.graphs.bfs,7
algorithms.

graphs.bidi_dijkstra,8

.graphs.bipartite, 9
.graphs.bst_check, 9
.graphs.dijkstra,8
.graphs.strongly_connected,

.graphs.topological_sort, 10
.greedy, 13

.greedy.covering_segments, 13
.greedy.fractional_knapsack,

.hash_tables, 23

.hash_tables.hash_chain, 23
algorithms.
algorithms.
algorithms.
algorithms.
algorithms.
algorithms.
algorithms.

search, 15
search.binary_search, I5
search.closest_pair, 15
search.fibonacci, 16
search.fibonacci_modulo, 17
search.rabinkarp, 17
sorting, 19

.sorting.merge_sort, 19
algorithms.

sorting.quick_sort, 19

25

python-algorithms Documentation, Release

26 Python Module Index

Index

A

add() (HashChain method), 24
algorithms.arithmetic (module), 3
algorithms.arithmetic.gcd (module), 3
algorithms.arithmetic.lcm (module), 3
algorithms.dynamic_programming (module), 21
algorithms.dynamic_programming.knapsack (module),
21
algorithms.graphs (module), 5
algorithms.graphs.AStar (module), 9
algorithms.graphs.bfs (module), 7
algorithms.graphs.bidi_dijkstra (module), 8
algorithms.graphs.bipartite (module), 9
algorithms.graphs.bst_check (module), 9
algorithms.graphs.dijkstra (module), 8
algorithms.graphs.strongly_connected (module), 10
algorithms.graphs.topological_sort (module), 10
algorithms.greedy (module), 13
algorithms.greedy.covering_segments (module), 13
algorithms.greedy.fractional_knapsack (module), 13
algorithms.hash_tables (module), 23
algorithms.hash_tables.hash_chain (module), 23
algorithms.search (module), 15
algorithms.search.binary_search (module), 15
algorithms.search.closest_pair (module), 15
algorithms.search.fibonacci (module), 16
algorithms.search.fibonacci_modulo (module), 17
algorithms.search.rabinkarp (module), 17
algorithms.sorting (module), 19
algorithms.sorting.merge_sort (module), 19
algorithms.sorting.quick_sort (module), 19
AStar (class in algorithms.graphs.AStar), 9

B

bfs_iterative() (in module algorithms.graphs.bfs), 7

bidi_dijkstra() (in module algo-
rithms.graphs.bidi_dijkstra), 8
binary_search() (in module algo-

rithms.search.binary_search), 15

bipartite() (in module algorithms.graphs.bipartite), 9
brute_force_distance() (in module
rithms.search.closest_pair), 16

algo-

C

check() (HashChain method), 24

check_if_bst() (in module algorithms.graphs.bst_check),
9

clear() (AStar method), 9

covering_segments() (in module
rithms.greedy.covering_segments), 13

algo-

D

delete() (HashChain method), 24
dijkstra() (in module algorithms.graphs.dijkstra), 8

F

fibonacci() (in module algorithms.search.fibonacci), 16

fibonacci_modulo() (in module algo-
rithms.search.fibonacci_modulo), 17

find() (HashChain method), 24

fractional_knapsack() (in module algo-

rithms.greedy.fractional_knapsack), 13

G

gcd() (in module algorithms.arithmetic.gcd), 3
get_edges() (in module algorithms.graphs), 5
get_nodes() (in module algorithms.graphs), 5

H

HashChain (class in algorithms.hash_tables.hash_chain),
23

L

lem() (in module algorithms.arithmetic.lcm), 3

M

merge_sort() (in module algorithms.sorting.merge_sort),
19

27

python-algorithms Documentation, Release

N

n_log_n_squared_distance() (in module algo-
rithms.search.closest_pair), 16

num_of_edges() (in module algorithms.graphs), 5

num_of_nodes() (in module algorithms.graphs), 5

O

optimal_weight() (in module algo-
rithms.dynamic_programming.knapsack),
21

P

potential() (AStar method), 9

prepare_direct_graph() (in module algorithms.graphs), 5

prepare_undirect_graph() (in module algorithms.graphs),
6

prepare_weighted_direct_graph() (in module algo-
rithms.graphs), 6

prepare_weighted_undirect_graph() (in module algo-
rithms.graphs), 6

Q

query() (AStar method), 9
quick_sort() (in module algorithms.sorting.quick_sort),
19

R

rabin_karp() (in module algorithms.search.rabinkarp), 17

readl() (in module algorithms.graphs.AStar), 9

reverse_graph() (in module algorithms.graphs), 6

reverse_weighted_graph() (in module algorithms.graphs),
6

S

sort() (TopologicalSort method), 10

strongly_connected_components() (StronglyConnected
method), 10

StronglyConnected (class in algo-
rithms.graphs.strongly_connected), 10

switch() (in module algorithms.sorting.quick_sort), 20

T

TopologicalSort (class in algo-
rithms.graphs.topological_sort), 10

Vv

visit() (AStar method), 9

28

Index

	algorithms.arithmetic
	GCD
	LCM

	algorithms.graphs
	BFS
	DFS
	Dijkstra
	Bidirectional Dijkstra
	Cycle detection (DFS)
	AStar
	Bellman-Ford (shortest path with negative arbitrage)
	Kruskal
	Bellman-Ford (with negative cycle detection)
	Bipartite
	BST check
	Strongly connected components
	Topological sort

	algorithms.greedy
	Covering segments
	Fractional Knapsack

	algorithms.search
	Binary Search
	Closest Pair
	Fibonacci
	Fibonacci with modulo
	Rabin-Karp

	algorithms.sorting
	Merge Sort
	Quick Sort

	algorithms.dynamic_programming
	Knapsack

	algorithms.hash_tables
	Hash Chain

	Python Module Index

